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1. Introduction

Optimal control theory began to take shape as a mathematical discipline in the
1950s. The motivation for its development were the actual problems of automatic control,
satellite navigation, aircraft control, chemical engineering and a number of other
engineering problems.

In applications of optimal control it is often arises [1, 2, 3, 5] the problem of exact
or approximate description of the reachability set of the linear controlled model given by

the recurrence relations
y(t+1)=A@)y()+ B)v(1) , M
y(0)=y,, v(t) eV (), t=0,12,...T-1. )
Here y(¢) is state m - vector , v(¢) is control s - vector, A(¢), B(¢) are given mxm
and mxs matrices accordingly, V' (¢) is subset of 7 - dimensional vector space R", T is

natural number.

Pair of discrete functions y(¢),v(¢) satisfying conditions (1), (2) is called the
process and consisting the process functions y(¢),v(¢) are called trajectory and control
accordingly. If we go through all the processes y(¢),v(t), the end points y(7") of the

trajectories will fill a certain set Y in space R™ called the reachability set of the system

(1), 2) attime T .
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The issues of structure, description and approximation of the reachability set,
when 7 - dimensional parallelepipeds are taken as regions of V' (¢), are the subject of this
work. In this sense, it is related to studies [1], [2]. The main attention is focused on the
exact description of the reachability set by a finite system of linear inequalities and the
simplest but unimprovable internal approximation of the reachability set by a maximal
cube or parallelepiped.

Under the assumptions made, the set Y is a polyhedron. Like any polyhedron, it
can be described by a finite or infinite system of linear inequalities. Depending on the
method of description, the problem of inscribing the maximal cube into the set Y is
posed and solved differently. If in the first case the problem is solved trivially, then in the
second case it is equivalent to a multi-extremal problem of mathematical programming -
maximization of a convex piecewise linear function on a polyhedron. Knowing the
solution to the first problem allows us to specify a global solution to the second problem.
Thus, a certain class of multi-extremal problems and a method for their global
optimization are indicated, which is not reduced to the known schemes of cutting off [4]

or a complete enumeration of the vertices of the polyhedron.

2. Specifying of the problem

Everywhere below we consider the regions V(f) as r- dimensional
parallelepipeds. Passing, if necessary, to recurrence relations in deviations and changing
the scales along the coordinate axes, we can take y, =0and V' (¢) =[-L1]" (standard s -

dimensional cube).
Having successively performed recursion (1) for ¢ =0,1,2,...,7 —1, we represent

relations (1), (2) in the form
y(T) = i AT -1D)A(T -2)...A)B(t —1)v(t -1)+ B(T —)W(T 1),

(0),v(Q),...,.v(T-1) eV (0O)xV () x..xV(T-1)
or in compact form

y=A4Ax, xe X, (3)
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where y is m- vector , x is n- vector, 4is mxn matrix, X =[—1,1]" is standard
cube, n=s7 is natural number. The notation (3) allows us to interpret the reachability

set in terms of a linear transformation 4: R" — R™ given by the matrix 4. According to
this interpretation, ¥ = AX is the result of a linear transformation of the cube X .

The subject of our attention will be two problems:
1. To describe the set Y analytically by a system of linear inequalities and
2. To construct the maximal cube inscribed in ¥ with edges parallel to the orthonormal
basis vectors of the space R".

Next we assume rank A=m, m<n.
3. Algorithm of construction of reachability set

Introduce columns al,az,...,a" of the matrix 4 and the sets Y, of their linear

combinations

y=xa +x,a’ +...+xkak , “)

x2| <1, ...,

where ‘x1|Sl, xk‘Sl, m<k<n.

Comparing representations (3) and (4) of the points of the sets Y, and Y , yields

Y, cY,

m+l

c..cY,Y =Y.

It is easy to see that thesets ¥, Y .., ..., Y are polyhedrons formed by the intersection

m+1°

of a finite number of half-spaces. Indeed, if necessary, we renumber the columns of the

matrix A so that the vectors a',a’,...,a" are linearly independent. Then formulas (4) for
k =n define a bijective mapping of the cube [—1,1]" into Y . Having written down the

inverse bijection and taking into account inequalities (4), we obtain a description of ¥

by a system of linear inequalities

6, V<1, i=1,2,....m,, (5)

-1
where m; =m, b', are the rows of the matrix (al ,a’,.., a'") . From this it is clear that

1

Y is a closed polyhedron symmetric with respect to the origin.
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Assume that for m <k <n it is found polyhedron Y, and

by <d,, i=12,...m, (©6)

is its description. Comparing representations Y, and Y,,,, we see that Y, , is obtained by

the union of all the shifts of the polyhedron Y, by the vectors 7/ak“, ;/| <1. Or, in other

words, the set Y, is formed by the vectors y+ya*"', where the variables y and y

independently run through the sets ¥, and [—1,1], respectively.

k+1

It is clear that when Y, is shifted by vectors ya"" the half-spaces (6) bounding

Y, will also shift in parallel; the maximum shifts correspond to  =+1. Due to this, the
points y €Y, will satisfy the inequalities

k+1

b'i,k+1 y‘ < df,k+1> i=L2,...m,, (7

' —hH!' — ' k+l _
where b', . =b"y, d;;, =d, +‘b a @ | My, =my.

Additional (m —1)-faces (faces of dimension m—1) of Y,,, will appear when

+1
shifting some (7 —2)-faces of ¥, to ya**'. In order to describe the additional faces, we
first establish three auxiliary results. The planes |b'ik y‘ <d, from the description (6) of
the polyhedron of ¥, will be called bounding planes.

Lemma 1. The (m—2)-face of a polyhedron Y, is located in the intersection of the

bounding planes b', y =d, and b', y =d, if and only if

k k
1. d, :Z\b’l a|, dy=)
=

il
b',a’l;

2. (b a’)(b',a’)20, j=1,2,...k;

3. rank(a"' :b'\a’ =b"ya’ =0) =m-2.
Proof of sufficiency of conditions 1-3 is evident. We show their necessity. Let the points
¥ lay on the given bounding planes and on (m —2)-face of Y, . Then for any point y
from Y, we have

d=b\y2b\y, d,=b,yzb")y.
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Substituting y and y from (4) gives

Zk:(xf _)_Cf)b" a’' <0, Zk:(x/ _fj)b'Q a’ <0,
: 2.

J=1

-1<x,x, <1, j=1,2,...k.
From here, in the virtue of arbitrary x ;. We conclude
(@ [%,|<1, b0’ =0 if b',a’ =0;
) ¥, =sign(b'1 aj), (b'1 a")(b'2 aj)ZO if b a’ 20.
Consequently, for the points it is true the following representation
y= ZA,‘GJ x.a’ +ngj sign(b'1 aj)aj ,
where J={1<j<k: b'a’ =b'ya’ =0}.

Obtained results along with the conditions (a) and (b) give the conclusions 1-3 of the

lemma.

Lemma 2. Let L be the intersection of the planes b', y =d, and b', y=d,. Then the

union of all shifts of L by vectors ya,

}/| <1 lies in the plane
(azbl —a,b, )'y =a,d, —ad,,
where o, =a'b, a,=a'b,.
If a,=a, =0 then the union of pointed above shifts coincides with L. The

validity of the lemma is verified by direct calculations.

Lemma 3. The plane b'y =d is a support one for a polyhedron Y if and only if

-3

J=1

b'a*".

Proof follows from the definition of a support plane and a set Y, .

Let us return to the description of the set Y,,, and show how the system (7) is
replenished by additional inequalities.
A. Choose indices i,i,, 1<i <i, <m, and the corresponding planes bounding ¥, from

the description (6). Let them be
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b',.lkyzdilk, b'izkyzdl.zk. (8)
Denote
b=b, by=b",, d=d,;, d,=d,.
B. Verify the conditions 1-3 of Lemma 1. If they are satisfied then the intersection of
planes (8) contains the (m —2)-face of Y, . Otherwise, go to step A.
C. Using Lemma 2, construct a plane

(b, —ab,)'y=a,d, —ad,, ©)

_k+l _k+l
a,=a b, a,=a"b,

containing all shifts of the intersection of planes (8) by vectors )/ak+1 , 7/‘ <1.

D. Check the condition of supporting plane (9) to the polyhedron ¥,
k .
|ad, — e dy| = Z‘(azbl —ayb, )'a" :
j=1

If the equality is not satisfied, go to step A.

E. Replace m,,, by m,,, +1. Set

b

my .y ,k+1

=a,b—ab,, d

My et =|062d| _a1d2|
Thus, one more inequality is added to the system of inequalities (7).
We change the indices i, i, and proceed to step A. The algorithm ends when all non-

repeating paired combinations of indices 1<i <i, <m, are exhausted.

Remark 1. The modules in the description (7) appear due to the symmetry of Y, ..

Remark 2. Each pair of inequalities (6) generates four bounding planes. For reasons
of symmetry, the intersections of only two pairs of planes are significant. Consequently,

the total number of intersections of pairs of planes examined in the algorithm when
moving from Y, to Y, is 2m, (m, —1).

Sequential application of the algorithm for k =m+1, m+2,...,n allows us to
construct a system of inequalities

Ib'.y|<d, i=12,...M, (10)

(b =b,. d,=d,

in? i in?

M =m,)
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describing the set ¥ =Y, in the space R". As can be seen from the description, the set

Y is a closed polyhedron symmetrical with respect to the origin.
4. Approximation of a reachability set

We consider the problem of inner approximation of a reachability set by cube (or

parallelepiped). Introduce necessary notations. We denote by
O(r.r) =2 [y, —r.y +r]
i=1

a cube with the center at a point y € R" and the sides of the length 2r parallel to the

coordinate axes. In particular, if y =0 we regard Q(0,7) =Q(7) . For ¢ € R" we put

m
el =2_le:
i=1

The following two results are immediately established.

Lemma 4. If O(y,r)cY ,then Q(r) Y.

Lemma 5. Inclusion Q(r) C Y is equivalent inequalities
rlbll<d, i=12,...M; r=0.
From Lemma 1 and Lemma 2, it follows:

Corollary 1. Maximal cube inscribed into a reachability set has the center in the origin
and the length of the side 27 * where
r¥*=min —- . (11)

1<i<u ||, |
1

For parallelepiped
P(y,r) =2 [y, =1y, +1],
=1

$=0iodass s )s 7= (s )20,
the above results are generalizing as follows: if P(y,7) Y, then P(r) C Y and the

latter is equivalent to the system
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y b.\r.<d., i=12,.,.M,
JZ:; z/|r./ ir ! (12)

rj >0, j=1,2,...m

in which bij is j -th component of the vector b,. The maximum of a parallelepiped

inscribed in Y can be understood in different senses: by volume, by the sum of its sides,
or by the minimum side. Depending on this, the construction of the desired parallelepiped
is reduced to a nonlinear programming problem with the target condition
K oFy+.nF, —> max
or a linear programming problem with one of the conditions
K+ +.. 41, — max;

r—omax, (r<n, r<r, .., r<r,)

under constraints (12) on the unknowns #, 7, ..., 7,

m*
5. Associated multi-extreme problem

Previously, we used the description of the reachability set in the form of a system
of linear inequalities. Let us move on to another description of ¥ - in the form of
supporting half-spaces.

Each supporting for ¥ half-space with a normal vector ¢ # 0 is defined by the
inequality

c'yS”c'A

) (13)

since

', () _ v — '

I?anxc y—ZmaX c'a’x; —Z|c a ‘—”c A||
RS J=1

Then the polyhedron Y as a closed convex set is the intersection of all supporting half-

spaces

Yz{y:c'yS”c’A

, ceR", c;tO}.
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On the language of supporting half-spaces, the condition Q(r) C Y is equivalent
to the condition of belonging of Q(r) to each supporting half-space (13), and this, in
turn, is equivalent to the fulfillment of the continuum of inequalities

rllc|<[c' 4|, ¢=0.
Jle* 4]
|l
Consequently, the length »* of the half of a side of maximum cube inscribed in

Y is

From here r <

1
r¥= minM = min||c'A|| )
c#0

TGS (9
Note that solution of extreme problem (14) exists by Weierstrass theorem and #*=0 if
rank A<m.

We will call the extremal problem (14) an associated one. Let us consider it in
more detail. By virtue of the definition of the norm, the associated problem consists of
minimizing a convex piecewise linear function on a non-convex unit sphere - the

boundary of a regular polyhedron. It is easy to see that this is a multi-extremal problem.

Theorem 1. Solutions ¢, and ¢, of the associated and auxiliary multi-extremal problems

© ' 4] - min, | =1:
@ ] —>max, e 4| <1
exist and differ only in normalization
c c

=3 = v . 15
Tl Al e ()

Proof. The solvability of the associated problem (s) is established above. By virtue of the
assumption of the maximum rank of 4, the set of admissible points in the auxiliary
problem (v) is limited. Since this set is closed and the objective function is continuous,
the auxiliary problem has a solution according to the Weierstrass theorem.

Let us prove formulas (15). Obviously, the points determined by (15) satisfy the

constraints of the corresponding problems. Let ¢, be a solution to the associated problem.

Then, based on (14), we have
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rld<le 4
for any ¢ 0. In particular, if |[c' 4| <1 then from the previous inequality we obtain
r*||lc| <1. At the same time, the first formula (15) gives 7*|c||=1. This means that
le,|| =] and ¢, is a solution to the auxiliary problem.

Let us now assume that c, is a solution to the auxiliary problem and ¢, is found
by the second formula (15). Then |c,||>||c| for |¢' 4] =1 and by virtue of the positive

homogeneity of conditions (v), we have Hc " A” =1. From this it follows

o', 4] _ e 4]
ol Il
or
||c's A” < ‘ C'AH for ||c|| =1. Theorem is proven.

We characterize the solutions of the auxiliary problems. Let Q(r*) be the

maximal cube inscribed in Y . Then, in accordance with (11), the index set
d.
I*=<i: r¥=—L 16
{ b } (16)

b y|. (17)

is defined. If { e ] *, then

d, =r*b] = max

Therefore, the planes |b' ; y| =d, corresponding to the inequalities (10) will be supporting
to the cube Q(r*).
Theorem 2. The normal of any supporting plane to the cube Q(r*) from among the

bounding planes of Y is a solution to the associated multi-extremal problem.

Proof. We fix any index i from /*. By Lemma 3, in the virtue of property of
supporting planes |b',- y‘zdl. we have dl.=||b'l. AH From here and (16) we
determine

o
[,
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that taking into account (14) gives the result. Theorem is proven.
From Theorems 1 and 2, as a consequence, it follows that the normal of the
bounding Y planes supporting to the cube Q(r*) determines the solutions of the

auxiliary problem

b.
t-—— € Argmax||c
6% 4| s ”

,iel*.

Conclusion

We discussed very important object of the theory of optimal control - the
reachability set. We considered linear model and introduced one method of its
construction in the form of the system of linear inequalities. Besides, for evaluation of the
reachability set we offered its inner approximation by cube or parallelepiped of the
maximum size. The latter is reduced to the problems of linear or nonlinear programming
depending on objective function. In addition, we obtained special multi-extremal problem
and its solution as the result of inner approximation of a reachability set defined in the

form of supporting planes.
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